Thompson's group *T*, groups acting on the circle and Poisson boundaries

based on joint work with Martín Gilabert Vio and Cosmas Kravaris

Eduardo Silva (eduardo.silva@uni-muenster.de) YGGT XIII – University of Copenhagen, 2025 University of Münster, Germany

Harmonic functions on groups

Let G be a countable group and let μ be a probability measure on G. A function $f : G \to \mathbb{R}$ is called μ -harmonic if $f(g) = \sum_{h \in G} f(gh) \mu(h)$ for all $g \in G$. The **Poisson boundary** (B, v) of (G, μ) is a probability G-space such that v is μ -stationary (i.e. $v = \mu * v$), and provides an isomorphism of Banach algebras

> $L^{\infty}(B, \nu) \rightarrow \{f : G \rightarrow \mathbb{R} \mid f \text{ bounded and } \mu\text{-harmonic}\}$

Main Theorem [Gilabert - Kravaris - S. '25]

Let $G \leq Homeo_{+}(S^{1})$ be a countable group acting proximally, minimally and topologically non-freely on S¹. Let μ be a non-degenerate probability measure on G with $-\sum_{g\in G} \mu(g) \log(\mu(g)) < \infty$. Then (S¹, v) is not the Poisson boundary of (G, μ) .

This applies in particular to Thompson's group *T*, the group of dyadic piecewise affine homeomorphisms of the circle.

$$F \mapsto \left(f(g) = \int_B F(gx) dv(x), \text{ for } g \in G \right)$$

Problem: Describe the Poisson boundary in terms of the geometric properties of G.

One can often identify G-equivariant quotients of (B, v), called μ -boundaries.

Knowing a μ -boundary corresponds to finding a subspace of bounded μ -harmonic functions. Saying that it is the Poisson boundary means that there are none of them missing.

Examples of Poisson boundaries

Gromov-hyperbolic groups. Let G be a non-elementary Gromov hyperbolic group, and denote by ∂G its Gromov boundary. Then for any non-elementary $\mu \in Prob(G)$ there is a unique μ -stationary probability measure v on ∂G . If $H(\mu) < \infty$, then $(\partial G, v)$ is the Poisson boundary of (G, μ) (Kaimanovich '94, Chawla-Forghani-Frisch-Tiozzo '22, and many more).

Wreath products. Consider the lamplighter groups $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}^d :=$ $\left(\bigoplus_{\mathbb{Z}^d} \mathbb{Z}/2\mathbb{Z}\right) \rtimes \mathbb{Z}^d$, $d \geq 3$. Let $\mu \in \operatorname{Prob}(\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}^d)$ be a nondegenerate finitely supported probability measure. Then there is a μ -stationary probability measure ν on $\prod_{\mathbb{Z}^d} \mathbb{Z}/2\mathbb{Z}$ such that $(\prod_{\mathbb{Z}^d} \mathbb{Z}/2\mathbb{Z}, v)$ is the Poisson boundary of $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}^d$ (Erschler '11, Lyons-Peres '21).

Our main theorem is related to the well-known open problem on whether Thompson's group F, the group of dyadic piecewise affine homeomorphisms of the interval [0, 1], is amenable. Indeed, the action of a countable group G on its Poisson boundary ($\partial_{\mu}G, v$) is amenable, and hence for v-almost every $x \in \partial_{\mu}G$ the stabilizer subgroup $G_X \leq G$ is amenable. If the circle were the Poisson boundary of T then we would conclude that F is amenable, since for each $x \in S^1$ the stabilizer $T_x \leq T$ contains a copy of F. Our theorem implies that this strategy does not work for μ with finite entropy.

The proof for Thompson's group T and finitely supported μ

- Thompson's group T is the group of dyadic piecewise affine homeomorphisms of the circle: that is, T is the group of orientation-preserving homeomorphisms $g: S^1 \to S^1$ such that the derivative of g is defined outside a finite subset of the dyadic rationals $\mathbb{Z}[1/2]/\mathbb{Z}$ and takes values in $\{2^k\}_{k\in\mathbb{Z}}$.
- For each $g \in T$, define a finitely supported function $C_q: \mathbb{Z}[1/2]/\mathbb{Z} \to \mathbb{R}$ by setting

 $C_g(x) = \log_2\left((g^{-1})'(x^+)\right) - \log_2\left((g^{-1})'(x^-)\right), \text{ for } x \in \mathbb{Z}[1/2]/\mathbb{Z},$

where $(g^{-1})'(x^+)$ (resp. $(g^{-1})'(x^-)$ is the left (resp. right) derivative of g^{-1} at x. That is, $C_q(x)$ is the derivative jump of g^{-1} at x.

Groups of homeomorphisms of the circle

The action $G \curvearrowright S^1$ is called **proximal** if for every proper interval $I \subset S^1$ and every $\epsilon > 0$ there is $g \in G$ with diam $(g(I)) < \epsilon$.

Theorem [Deroin-Kleptsyn-Navas '07]

Let $G \curvearrowright S^1$ by orientation-preserving homeomorphisms with no invariant probability measure on S¹, and let $\mu \in Prob(G)$ be non-degenerate. Suppose that $G \curvearrowright S^1$ is proximal. Then there is a **unique** μ -stationary probability measure v on S¹, and (S^1, v) is a μ -boundary of G.

The proof goes as follows: one shows that for almost every sample path $\mathbf{w} = (w_n)_{n>0} \in G^{\mathbb{N}}$ of the μ -random walk on G there exists a point $\xi(\mathbf{w}) \in S^1$ such that $\lim_{n\to\infty} (w_n)_* v = \delta_{\xi(\mathbf{w})}$ in the weak-* topology. The measure v is the distribution of $\xi(\mathbf{w})$ on S¹.

- Denote the set of all (not necessarily finitely supported) functions $\mathbb{Z}[1/2]/\mathbb{Z} \to \mathbb{R}$ by $\mathbb{R}^{\mathbb{Z}[1/2]/\mathbb{Z}}$.
- For almost every trajectory $\mathbf{w} = (w_n)_n \in T^{\mathbb{N}}$ of the μ -random walk, the configurations $(C_{W_n})_{n>0}$ converge pointwise to a map $C_{\infty}(\mathbf{w}) \in \mathbb{R}^{\mathbb{Z}[1/2]/\mathbb{Z}}$. The hitting measure λ is a μ -stationary prob. measure on $\mathbb{Z}^{\mathbb{Z}[1/2]/\mathbb{Z}}$ such that the space $(\mathbb{Z}^{\mathbb{Z}[1/2]/\mathbb{Z}}, \lambda)$ is a μ -boundary of T.

• Since the measure λ is nontrivial, there exists $y \in \mathbb{Z}[1/2]/\mathbb{Z}$ and $k \in \mathbb{Z}$ such that $f: T \to [0, 1]$ defined by

$$f(g) = \mathbb{P}_g \left[\mathbf{w} \in T^{\mathbb{N}} \mid C_{\infty}(\mathbf{w})(y) = k \right], \text{ for } g \in T$$

satisfies $f(e_T) > 0$. The function f is bounded and μ -harmonic.

• There exists a sequence $\{g_n\}_{n\geq 0} \subseteq T$ such that $supp(g_n)$ are closed intervals containing y and such that diam(supp(g_n)) $\xrightarrow[n \to \infty]{} 0$ and $f(g_n) \xrightarrow[n \to \infty]{} 0$. Indeed, one constructs a sequence such that:

$-g_n(y) = y,$

- -supp (g_n) is a dyadic interval containing y and of length $2^{-n} + 2^{-2n}$, and
- the derivative jump of g_n at y is equal to 2^n .

Clearly diam(supp(g_n)) $\xrightarrow[n \to \infty]{}$ 0. Moreover, if $g \in T$ fixes y we have

Theorem [Deroin '13]

Suppose furthermore that the action $G \curvearrowright S^1$ is strongly dis**crete** and sufficiently regular, and that μ is finitely supported. Then (S^1, v) is the Poisson boundary of (G, μ) .

This is satisfied in particular by cocompact lattice in $PSL_2(\mathbb{R})$. The groups covered by the above result fall within a family that is conjectured to be composed only of Gromov-hyperbolic groups, and hence their Poisson boundaries could alternatively be described using their Gromov boundaries.

Question [Deroin '13, Navas '17]: Is (S¹, v) always the Poisson boundary of (G, μ) ?

 $f(g) = \mathbb{P}_{q} \left[C_{\infty}(\mathbf{w})(y) = k \right] = \mathbb{P} \left[C_{\infty}(\mathbf{w})(y) = k - \log_{2}(g')^{+}(y) + \log_{2}(g')^{-}(y) \right]$ so that in particular $f(g_n) = \mathbb{P}\left[C_{\infty}(\mathbf{w})(y) = k - n\right] \xrightarrow[n \to \infty]{} 0.$ • If (S^1, v) were the Poisson boundary of (T, μ) , then there would exist $h \in L^{\infty}(S^1, v)$ such that $f(g) = \int_{c_1}^{c} h(gx) dv(x)$, for all $g \in T$. Set I_n = supp (g_n) for each $n \ge 1$. The equality $f(g_n) = \int_{S^1} h(g_n x) dv(x) = \int_{S^1 \setminus I_n} h(g_n x) dv(x) + \int_{I_n} h(g_n x) dv(x)$ and the fact that v is non-atomic imply that $\int_{S^1 \setminus I_n} h(x) dv(x) = \int_{S_1 \setminus I_n} h(g_n x) dv(x) \xrightarrow[n \to \infty]{} 0$. This would imply that $f(e_T) = \int_{S^1} h(x) dv(x) = 0$, which is a contradiction.

This approach only works for groups of piecewise affine transformations of S¹. The general proof is based on conditional entropy techniques (cf. Kaimanovich, Erschler).