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Harmonic functions on groups

Let G be a countable group and let µ be a probability measure on G.
A function f : G → Ò is called µ-harmonic if f (g) =

∑
h∈G f (gh)µ(h)

for all g ∈ G. The Poisson boundary (B, ν) of (G, µ) is a probability
G-space such that ν is µ-stationary (i.e. ν = µ ∗ ν), and provides an
isomorphism of Banach algebras

L∞(B, ν) → {f : G→ Ò | f bounded and µ-harmonic}

F ↦→
(
f (g) =

∫
B
F(gx)dν(x), for g ∈ G

)
Problem: Describe the Poisson boundary in

terms of the geometric properties of G.
One can often identify G-equivariant quotients of (B, ν), called
µ-boundaries.

Knowing a µ-boundary corresponds to finding a subspace of
bounded µ-harmonic functions. Saying that it is the Poisson
boundary means that there are none of them missing.

Examples of Poisson boundaries

Gromov-hyperbolic groups. Let G be a non-elementary Gromov hy-
perbolic group, and denote by ∂G its Gromov boundary. Then for
any non-elementary µ ∈ Prob(G) there is a unique µ-stationary
probability measure ν on ∂G. If H(µ) < ∞, then (∂G, ν) is the Poisson
boundary of (G, µ) (Kaimanovich ’94, Chawla-Forghani-Frisch-Tiozzo
’22, and many more).
Wreath products. Consider the lamplighter groups Ú/2Ú ≀ Úd B(⊕

ÚdÚ/2Ú
)
⋊ Úd, d ≥ 3. Let µ ∈ Prob(Ú/2Ú ≀ Úd) be a non-

degenerate finitely supported probability measure. Then there
is a µ-stationary probability measure ν on

∏
ÚdÚ/2Ú such that

(
∏

ÚdÚ/2Ú, ν) is the Poisson boundary of Ú/2Ú ≀ Úd (Erschler ’11,
Lyons-Peres ’21).

Groups of homeomorphisms of the circle

The action G ↷ S1 is called proximal if for every proper interval
I ⊂ S1 and every ϵ > 0 there is g ∈ G with diam(g(I)) < ϵ.

Theorem [ Deroin-Kleptsyn-Navas ’07]

Let G ↷ S1 by orientation-preserving homeomorphisms with
no invariant probability measure on S1, and let µ ∈ Prob(G)
be non-degenerate. Suppose that G ↷ S1 is proximal. Then
there is a unique µ-stationary probability measure ν on S1,
and (S1, ν) is a µ-boundary of G.

The proof goes as follows: one shows that for almost every sample
path w = (wn)n≥0 ∈ GÎ of the µ-random walk on G there exists
a point ξ(w) ∈ S1 such that limn→∞(wn)∗ν = δξ(w) in the weak-∗
topology. The measure ν is the distribution of ξ(w) on S1.

Theorem [Deroin ’13]

Suppose furthermore that the action G ↷ S1 is strongly dis-
crete and sufficiently regular, and that µ is finitely supported.
Then (S1, ν) is the Poisson boundary of (G, µ).

This is satisfied in particular by cocompact lattice in PSL2(Ò). The
groups covered by the above result fall within a family that is con-
jectured to be composed only of Gromov-hyperbolic groups, and
hence their Poisson boundaries could alternatively be described
using their Gromov boundaries.

Question [Deroin ’13, Navas ’17]: Is (S1, ν) always the
Poisson boundary of (G, µ)?

Main Theorem [Gilabert - Kravaris - S. ’25]

Let G ≤ Homeo+(S1) be a countable group acting proximally, minimally
and topologically non-freely on S1. Let µ be a non-degenerate probabil-
ity measure on G with –

∑
g∈G µ(g) log(µ(g)) < ∞. Then (S1, ν) is not the

Poisson boundary of (G, µ).
This applies in particular to Thompson’s group T, the group of dyadic
piecewise affine homeomorphisms of the circle.

Our main theorem is related to the well-known open problem on whether Thompson’s group F, the
group of dyadic piecewise affine homeomorphisms of the interval [0, 1], is amenable. Indeed, the
action of a countable group G on its Poisson boundary (∂µG, ν) is amenable, and hence for ν-almost
every x ∈ ∂µG the stabilizer subgroup Gx ≤ G is amenable. If the circle were the Poisson boundary of
T then we would conclude that F is amenable, since for each x ∈ S1 the stabilizer Tx ≤ T contains a
copy of F. Our theorem implies that this strategy does not work for µ with finite entropy.

The proof for Thompson’s group T and finitely supported µ

• Thompson’s group T is the group of dyadic piecewise affine homeomorphisms of the circle: that is, T
is the group of orientation-preserving homeomorphisms g : S1 → S1 such that the derivative of g is
defined outside a finite subset of the dyadic rationals Ú[1/2]/Ú and takes values in {2k}k∈Ú.
• For each g ∈ T, define a finitely supported function Cg : Ú[1/2]/Ú → Ò by setting

Cg(x) = log2
(
(g–1)′(x+)

)
– log2

(
(g–1)′(x–)

)
, for x ∈ Ú[1/2]/Ú,

where (g–1)′(x+) (resp. (g–1)′(x–) is the left (resp. right) derivative of g–1 at x. That is, Cg(x) is the
derivative jump of g–1 at x.
•Denote the set of all (not necessarily finitely supported) functions Ú[1/2]/Ú → Ò by ÒÚ[1/2]/Ú.
• For almost every trajectory w = (wn)n ∈ TÎ of the µ-random walk, the configurations (Cwn)n≥0 con-
verge pointwise to a map C∞(w) ∈ ÒÚ[1/2]/Ú. The hitting measure λ is a µ-stationary prob. measure
on ÚÚ[1/2]/Ú such that the space (ÚÚ[1/2]/Ú,λ) is a µ-boundary of T.
• Since the measure λ is nontrivial, there exists y ∈ Ú[1/2]/Ú and k ∈ Ú such that f : T → [0, 1] defined
by

f (g) = Ðg
[
w ∈ TÎ | C∞(w)(y) = k

]
, for g ∈ T

satisfies f (eT) > 0. The function f is bounded and µ-harmonic.
• There exists a sequence {gn}n≥0 ⊆ T such that supp(gn) are closed intervals containing y and such
that diam(supp(gn)) −−−−−→

n→∞
0 and f (gn) −−−−−→

n→∞
0.

Indeed, one constructs a sequence such that:

– gn(y) = y,
– supp(gn) is a dyadic interval containing y and of

length 2–n + 2–2n, and
– the derivative jump of gn at y is equal to 2n.
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Clearly diam(supp(gn)) −−−−−→
n→∞

0. Moreover, if g ∈ T fixes y we have

f (g) = Ðg
[
C∞(w)(y) = k

]
= Ð

[
C∞(w)(y) = k – log2(g′)+(y) + log2(g′)–(y)

]
so that in particular f (gn) = Ð

[
C∞(w)(y) = k – n

]
−−−−−→
n→∞

0.

• If (S1, ν) were the Poisson boundary of (T, µ), then there would exist h ∈ L∞(S1, ν) such that

f (g) =
∫
S1
h(gx)dν(x), for all g ∈ T.

Set In = supp(gn) for each n ≥ 1. The equality

f (gn) =
∫
S1
h(gnx)dν(x) =

∫
S1\In

h(gnx)dν(x) +
∫
In
h(gnx)dν(x)

and the fact that ν is non-atomic imply that
∫
S1\In h(x)dν(x) =

∫
S1\In h(gnx)dν(x) −−−−−→

n→∞
0. This would

imply that f (eT) =
∫
S1 h(x)dν(x) = 0, which is a contradiction.

" This approach only works for groups of piecewise affine transformations of S1. The general
proof is based on conditional entropy techniques (cf. Kaimanovich, Erschler).


